Hierarchically Assembled Bowtie-Shaped Hybrid Metamaterials with a Chirality Continuum

Chirality is a geometrical property described by continuous mathematical functions. However, in chemical disciplines chirality is often treated as a binary left/right characteristic of molecules rather than a continuity of chiral shapes. While being theoretically possible, a family of stable chemical structures with similar shapes and progressively tunable chirality is yet unknown.

In this presentation, we will explore such structures in the form of nanostructured microparticles with anisotropic bowtie shape and widely tunable twist angle, pitch, width, thickness, and length. The self-limited assembly of the bowties enables high synthetic reproducibility, size monodispersity, and computational predictability of their geometries for different assembly conditions. The bowtie nanoassemblies display multiple strong circular dichroism peaks originating from absorptive and scattering phenomena. Unlike classical chiral molecules, these particles display a continuum of chirality measures that correlate exponentially with the spectral positions of the circular dichroism peaks. We will further demonstrate how these bowtie particles with variable polarization rotation were used to print photonically active metasurfaces with spectrally tunable positive/negative polarization signatures for light detection and ranging (LIDAR) devices.

  • <<
  • >>