SAW Instruments Enhances Protein Interaction Analysis with the sam®X Acoustic Biosensor

A robust platform for label-free biomolecular assays

Bonn, Germany ­ 18 June 2013: ­ SAW Instruments, developer of the innovative sam® family of biosensors for real-time, label-free biomolecular interaction assays, is continuing to advance acoustic wave biosensor technology with the sam®X platform. Based on SAW's Surface Acoustic Wave technology, the biosensors measure changes in mass and viscoelasticity at the chip surface based on changes in the high frequency acoustic oscillations running across the chip surface. This innovative approach is complementary to other biophysical techniques, such as SPR and QCM for measuring protein interactions, and can also be used for samples and applications that are difficult to analyse by these other methods, thus providing additional information and insights.

The sam®X platform is ideally suited to the study of native membrane proteins and protein complexes such as the 7TM G-Protein Coupled Receptors (GPCRs), either as membrane fragments or within liposome or vesicle particles. Such complexes can be very challenging to analyse by traditional biosensor platforms. For these therapeutically relevant targets, sam®X technology represents a new potential tool for drug discovery programs.

Closely coupled to this, many drug companies are also interested in looking at the separate conformational data from the sam®X platform (i.e. measuring the change in the acoustic wave amplitude) when using small molecule candidates against protein targets or vesicles. This can provide very valuable information on compounds whose binding induces structural changes in their targets.

In terms of practical workflow improvement and benefits, the eight channels of the dual-chip sam®X system provide more sensors for a higher throughput, and perhaps even more importantly, provide flexible fluidic channel routing which allows different samples or reagents to be delivered to discrete channels or combinations of channels on the chip. Different proteins can also be immobilized at separate sensor position while the chip is on-line, enabling loading of the surface to full capacity, and allowing for a degree of quantification, which vastly improves data quality and assists interpretation.

For more information please visit the SAW Instruments website at www.saw-instruments.com.

Notes on the technology

Surface Acoustic Wave technology is based on the ability of a wave of energy to travel across the surface of a material. Each surface has a typical inherent elasticity affecting the way the energy of the wave dissipates as it travels across the surface of the material being analysed. Thus, the nature of the surface in question, and therefore any changes to it, can be assessed by sensors monitoring the behaviour of the wave as it propagates across the surface. In particular, changes in mass result in alterations to the phase of the wave, whilst viscoelastic and conformational characteristics influence wave amplitude. The technology developed and employed by SAW instruments is capable of accurately interpreting this information in order to provide real time readouts measuring binding and conformational changes in the samples through which the wave passes.

About SAW Instruments GmbH

SAW Instruments GmbH, headquartered in Bonn, Germany, designs, develops and sells biosensor-based laboratory instruments for life sciences research. The proprietary technology of SAW Instruments employs a Surface Acoustic Waves approach to biological measurement, rather than using traditional optical methods such as SPR. The technology is used to measure in real-time protein binding kinetics and affinity constants.

SAW Instruments has more than ten years experience in the field of label-free biosensor technology and a number of our customers have successfully published work employing the platform. It is our goal is to continue to build on this experience, as well as to develop a family of workflow-driven products to further meet our customers' needs.

Product Enquiries:
SAW Instruments GmbH
Dr Ian Taylor
t: +44 (0)7554 446185
e: [email protected]
w: www.saw-instruments.com